ABSOLUTE CONFIGURATION OF FARFUGIN A.

Masahiro Tada, Yoshihiko Moriyama, Yoshiaki Tanahashi and Takeyoshi Takahashi Department of Chemistry, Faculty of Science,

The University of Tokyo, Bunkyo-ku, Tokyo, Japan

(Received in Japan 18 October 1972; received in UK for publication 21 November 1972)

Previously we reported the structure of farfugin A (<u>1</u>) and farfugin B (<u>2</u>), benzofuran derivatives isolated from <u>Farfugium japonicum</u>.^{1,2)} In the subsequent paper³⁾, we will describe the skeletal rearrangement of furanceremophilane-6 β , 10 β -diol(<u>3</u>)⁴⁾ into <u>1</u> and <u>2</u>. Farfugin A (<u>1</u>) formed from <u>3</u> was optically active. This fact directed our attention to the mechanism of this rearrangement. Here we will report the determination of absolute configuration of farfugin A (<u>1</u>) which is indispensable for elucidation of the mechanism.⁵

Condensation of p-cresol with ethyl acetoacetate in polyphosphoric acid (PPA) at 80° for 1 hr gave 4,6-dimethylcoumarin ($\underline{4}$)⁶) (yield 45%), m.p. 150.5-151.5°. The dihydro derivative ($\underline{5}$)⁷, m.p. 35.0-35.5°, obtained by hydrogenation of $\underline{4}$ over Pd-C, was converted to 3-(2-methoxy-5-methylphenyl)butanoic acid ($\underline{6}$) (yield 85%), m.p. 60.5-61.5°, by hydrolysis and methylation with NaOH-H₂O-Me₂SO₄ in a single step. The resolution of the acid ($\underline{6}$) was accomplished by recrystallization of its strychinine salt from CHCl₃-EtOH-H₂O. Levorotatory acid ($\underline{6a}$), m.p. 60°, ($\underline{\alpha}$)_D -20°(in CHCl₃)⁸), was obtained from the crystalline salt, while the mother liquor gave its enantiomer ($\underline{6b}$), m.p. 60-60.5° ($\underline{\alpha}$)_D +14°(in CHCl₃)⁸.

			TABLE	Spectral	Data
Compounds	Molecular Formulae	M+	IR (cm ⁻¹)	UV $(nm)^{a}$ λ_{max} (ε)) PMR (ôin ppm) ^{b)}
<u>6</u>	^C 12 ^H 16 ^O 3	208	~3000 1710 1502		1.30(3H, d, J=7), 2.27(3H, s), 3.80(3H, s), 6.60-6.95(3H, m)
Z	^C 12 ^H 14 ^O 2	190	1715 1590 1500	238(8000) 246(8300) 253(8600) 308(3500) 317(3300)	1.34(3H, d, J=7), 2.53(3H, s), 2.20(1H, dd, J=19; J=3), 2.85(1H, dd, J=19; J=7), ~3.4(1H, m), 3.82(3H, s), 6.88(1H, d, J=8), 7.00(1H, d, J=8)
2	C ₁₁ H ₁₂ O	160	1715 1600 1480	243(12000) 288(2500) 298(2600) 260(sh) 294(sh)) 1.38(3H, d, J=7), 2.65(3H, s), 2.26(1H, dd, J=19; J=4), 2.90(1H, dd, J=19; J=7), ~3.4(1H, m), 7.0-7.6(3H, m)
<u>1b</u>	с ₁₅ н ₁₈ 0	214	1600 1550 1535 1100	*252(10500) 281(2300) 291(2500)) 1.38(3H, d, J=7.5), 2.18(3H, d, J=1.5), 2.28(3H, s) 7.10(1H, s), 7.26(1H, m)

a) Determined in cyclohexane (* in EtOH).

b) Determined in CDClz. Coupling constants are expressed in Hz.

The absolute configuration of these acids was deduced from comparison of the optical property of indanones 7 and 9 prepared from (+)-acid <u>6b</u> with that of well established (-)-(3R)-3-methyl-1-indanone (<u>10</u>)⁹⁾. Cyclization of <u>6b</u> with PPA gave 7 (quantitative yield), an oil, which was demethylated with HBr to afford a phenol (<u>8</u>)¹⁰⁾, m.p. 203° (yield 65 %). Phosphorylation of <u>8</u> according to Kenner¹¹⁾, followed by reduction with Li in liquid NH₃ and oxidation with Jones' reagent, furnished 3,7-dimethylindanone (<u>9</u>) (yield 50 %), an oil. The ORD curves (in cyclohexane) of 7^{12} ([\mathfrak{f}]₅₈₉ +40, (\mathfrak{f}]₃₆₅ +1100, (\mathfrak{f}]₃₅₈ +720, [\mathfrak{f}]₃₅₀ +1000, (\mathfrak{f}]₃₄₀ +220, [\mathfrak{f}]₃₃₅ +330, (\mathfrak{f}]₃₂₅ -1200(shoulder), [\mathfrak{f}]₃₁₃ -2200, [\mathfrak{f}]₂₉₇ ±C] and 9^{12} ([\mathfrak{f}]₅₈₉ +8, (\mathfrak{f}]₃₆₈ +600, (\mathfrak{f}]₃₅₉ +410, (\mathfrak{f}]₃₅₂ +640, (\mathfrak{f}]₃₃₉ +60(shoulder), (\mathfrak{f}]₃₂₄ -1200(shoulder), [\mathfrak{f}]₃₁₁ -2000(shoulder), [\mathfrak{f}]₃₀₀ -2700, [\mathfrak{f}]₂₉₀ -2300] are almost mirror images to that of <u>10</u>. Thus, as to asymmetric center the (-)-acid (<u>6a</u>) possesses the same configuration (R) as that of <u>10</u>.

Homologation of the (-)-acid (<u>6a</u>) by Arndt-Eistert reaction gave an acid $(\underline{11})^{13}$ (yield 76 %), m.p. 87.5°, which was converted to a tetrahydronaphthol (<u>14</u>) (yield 70%) according to the procedures (<u>11</u> \rightarrow <u>12</u> \rightarrow <u>13</u> \rightarrow <u>14</u>) described in the

literatures¹³⁾. An optical active benzofuran $(\underline{1b})^{5b}$ (yield from $\underline{14}$; 33 %), m.p. 77°, $[\alpha]_D -27°$, an enantiomer of farfugin A $(\underline{1})$, $[\alpha]_D +39°$, was obtained by the reaction sequence $(\underline{14} \rightarrow \underline{15} \rightarrow \underline{1b})$ already reported¹⁾.

These observations lead to the absolute configuration of \underline{la} for farfugin A whose configuration at C-9 must be (S).

REFERENCES

- H. Nagano, Y. Moriyama, Y. Tanahashi, T. Takahashi, M. Fukuyama and K. Sato, <u>Chemistry Lett</u>. <u>1972</u>, 13.
- 2. Farfugin A and farfugin B obtained from natural source might be artifacts produced from 3 during isolation procedures.
- M. Tada, Y. Tanahashi, Y. Moriyama and T. Takahashi, <u>Tetrahedron Lett</u>. <u>1972</u>: the subsequent paper.
- M. Tada, Y. Moriyama, Y. Tanahashi, T. Takahashi, M. Fukuyama and K. Sato, <u>Tetrahedron Lett. 1971</u>, 4007.
- 5. a) To achieve the resolution of intermediates (<u>6a</u> and <u>6b</u>) and determine absolute configurations of the compounds (<u>1</u>, <u>6a</u> and <u>6b</u>) in question, we followed the reaction pathway described here. b) Spectral data (IR, UV, PMR and MS) of new compounds are listed in the table.
- 6. A. Müller, <u>Ber</u>. <u>58</u>, 2202 (1925).
- 7. K. Sato, T. Amakasu and S. Abe, J. Org. Chem. 29, 2971 (1964).
- 8. Optical purities of <u>6a</u> and <u>6b</u> are undetermined.
- 9. J. Almy and D. J. Cram, <u>J. Amer. Chem. Soc. 91</u>, 4459 (1969).
- 10. N. F. Hayes and R. H. Thomson, <u>J. Chem. Soc. 1956</u>, 1585.
- 11. G. W. Kenner and N. R. Williams, J. Chem. Soc. 1955, 522.
- 12. Though these compounds (7 and 9) are prepared from optically less active (+)-acid (<u>6b</u>), the ORD data show enough that their asymmetric centers must be (S).
- O. P. Vig, S. S. Sanghu and S. M. Mukherji, <u>J. Indian Chem. Soc</u>. <u>34</u>, 81 (1957).
 S. M. Bloom, <u>J. Amer. Chem. Soc</u>. <u>80</u>, 6280 (1958).